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LEAST p-th POWER POLYNOMIALS ON 

A REAL FINITE POINT SET1 

by 

To Sc Motzkin*  and J„ L„ Walsh3 

It is our object in the present paper to  study best approximation 

on a set E consisting of a finite number of distinct points 

zis  z09   ""  >  z  *  '° a ?Av'en function f(z) defined on Ea by polynomials 

p (z)  of given degree    n(~5 ra  •• 2)„    As deviation or measure of approxi- 

mation we use primarily the sum 

CD £   Pk|f(«k) - Pn<«k> I    »    Fk> ° 
k*l 

where the p.    are given, but  also use various broad generalizations of 

(l) o    The analogous problem for approximation on a finite i^iterval, 

where (l) is replaced by an integral? has been studied by Korkine  and 

Presented to the American Mathematical Society, December 19^2„ 

An abstract was published in Bull* Amer„ Math„ Soc0, vol„ 5>9 (195>3) p.. 163. 

This work was performed under a contract with the University of 

California for the  National Bureau of Standards,  and under a contract 

with Harvard University^  it was sponsored (in part) by the Office of 

Naval Research,  USN,   and by the Office of Scientific Research,  USAF„ 
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Any polynomial a z    + a,z        •  ° •« • a    is said to be of degree n. 



Zolotareff[6], and for approximation by linear families more general 

than polynomials by Laasonen [7]° 

An important special case of the problem of approximation is the 

choice f(z) = z   j   here the difference f(z) - p (z) is the 

T-polynomial of degree n + 1, namely the polynomial 

T ,(a) S z   + b. z + °•° + b_ of best approximation on E to the 

function zero. 

Our entire discussion deals largely with the separation of points 

of a real set E by zeros cf T Jz) or by points of interpolation of 

pn(z) to f(z)0 

Of especial interest is (1) as a measure of approximation on a 

real s^t in the case n • m - 2S  for then (as we shall prove) the 

polynomials of best approximation to f(x) on E can be found by inter- 

polation to f(x) in certain preassigned points of E which are independent 

of f(x)„ This is analogous to the results of Laasonen., 

We emphasize approximation on a real set Es but some of the present 

results apply also to a non-real set, and a later paper will be devoted 

to the more general case„ In % 1 we mention briefly existence and 

non-uniqueness of extremal polynomials„ In § 2 we consider best 

approximation as determined by interpolation,, In j§3 we study separa- 

tion by E of the zeros of T-polynomials for general deviation, and in 

§ h  approximation by arbitrary families of functions„ In § 5 we 

consider the totality of extremal polynomials as a convex set, in § 6 



approximation in the sense of least p-th powers (0 < p < 1), and in 

§ 7 we consider further the separation properties of zeros of 

T-polynomials., Then § 8 is devoted to the specific determination of 

the polynomials T i(x),, and finally §9 to the mutual separation of 

zeros of T-polynoiruals of various degrees, 

§L Existenc3 and non-uniqueness of extremal polynomials,. The 

existence of an extremal polynomial follows from the fact that if a 

sequence cf polynomials of degree n is bounded on E, each coefficient 

is bounded and hence there exists some subsequence which converges on E. 

But the extremal polynomial need not be unique„ Even in the 

simple case m = 2 z, * 0„ z„ • 1, f(z) s z, u, • 1, every polynomial of 

degree zero of the form p (z) • u„ 0 » u = ls yields approximation 

with measure (1) equal to unity.. 

As another illustration of the non-uniqueness of the polynomial of 

best approximation, we mention z, * ()„ z? * 5(0 c- S  < |-)» z_ * 1 - 8 , 

Zi * ls f(z..) « 
f(zi) * "l t   

f(zp) * £(z?) a  °i Pk * !J any real linear 

function whose graph cuts the non horizontal sides of the trapezoid 

(0, l)s (Si 0), (i -S, 0), (1«1) is a polynomial of degree unity of 

best approximation*, Also in the important case of the T-polynomials 

T ,(z) may fail to be unique„ 

§20 Approximation determined by interpolation,, The case m &  n+1 

is trivial, for in that case there exists an admissible polynomial p (z) 

which coincides with f(z) in all the points of Es and for which (1) 

vanishes. We 3hall consider in some detail the first non-trivial case, 

m • n+20 



h 

THEOREM 1  In the case m • n+2s let P(z.) be the unique poly- 

nomial of degree n + 1 coinciding with f(z) on E; then each extremal 

polynomial p (z) with deviation (1) is a polynomial of degree n found 

by interpolation to P(z) in the zeros of some T n(z); conversely, 

any polynomial cf degree n found by interpolation to P(z) in the zeros 

of a T ,(z) is a polynomial of best approximation,, — - n+1 

In the notation P(z) s  a z   + a, z11 + • ••, we have to study the 
o      1       ' 

minimum of 

n+2 (   n+2       I   , 

k»l I   k=-i       ' 

and if |a | ^ 0 the solution of this minimum problem is o 

P(z) - p (z) * a T , (z) n      o n^^L 

If p (z) is an extremal polynomial, then p (z) coincides with P(z) 

in the zeros of T ,(z)%  if p (z) coincides with P(z) in the zeros of 
n*l • '*   *nv ' v ' 

some TnA-j(s)j then the difference P(z) - p (z) is divisible by 

T n(z)> hence equal to a T ,(z). The case a • 0 is exceptional n+lv " M      o n-lv ' o * 

in this reasoning but trivial, for then P(z)-p (z) • 0. 

Theorem 1 is especially significant in the case that E is real, 

for then (§3f below) a suitable polynomial T -,(z) can be chosen to 

vanish only on Ej the corresponding polynomial p (z) interpolates to 

P(z) and hence to f(z) in n+1 points of E; these n+1 points can be 



chosen to be independent of f(z)o However,, we do not assert that 

all extremal polynomials p (z) can be found in this way; the poly- 

nomial T +1(z) is not necessarily uniquet and under some conditions 

may be chosen to have not all its zeros on E» since f(z) is assumed 

to be defined only on E„ interpolation in points not on E to f(z) 

has no significance„ 

Theorem 1 has been established for the case of (1) as a measure 

of approximation, but expends at once to various other measures of 

approximation on E9 such as 

(2) max \!fK» -Pn<zk>|] »    <\>0    » 

m 
(3) J.   ^    '<»k>~Pn<*k>r   . P>0.    uk>0    . 

Indeed,, Theorem 1 extends to an arbitrary measure of approximation 

which is homogeneous (not necessarily of degree unity) in the in- 

dividual errors |f(z.) - p (z. )|« 
-K      UK 

For deviation (3) with p > 1„ the polynomial p (z) of best 

approximation is unique 5 if two polynomials have the same deviation, 

half their sum has a smaller deviation,, 

It follows by reasoning due to Fejer [3] for deviations (l)s (2), 

(3)» or even for more general deviations and more general point sets 

that the zeros of T  ,(z) lie in the convex hull of E„ The zeros of 



the T -,(z) have been studied in more detail by Fekete and von Neumann 
n+i 

[5] with deviation (2) and by Fekete [k]  with more general deviations, 

§3°  Zeros of T-polynomial for E real„ Methods developed by 

Korkine and Zolotareff [6] and by Achyeser [1] for approximation on an 

interval apply with some modification to the present study if E is real„ 

Like Fejer,, we use a deviation £  of considerable generality„ 

Fejer assumes merely that his norm (which he calls a monotone 

deviation) is defined for polynomials of given degree,, rather than for 

arbitrary err?r functions of t-h-3 form f (z) - p (z)5 and assumes that 

his norm has a mcnotonic property for polynomials which may have zeros 

on E„ He requires that the norm be greater for any polynomial 

g(z) = z + "»• of degree n than for any underpclynomiai h(z) » z + ••• 

of the same degreei  here h(z) is defined to be an underpolynomial of 

g(z) if h(a) - g(z) on the subset cf E on which g(z) vanishes, and if 

|h(z)| < |g(z) on the remaining subset of E, For the case of polynomials 

Fejer's requirements are identical with ours.  ".lis norm is more general 

than £ in the sense that because defined only for polynomials of given 

degree it may depend conceivably on special intrinsic properties of 

polynomials, such as coefficients or values in points not on Es hence 

may not be defined or not subject to monotonicity requirements for more 

general functions. Our S  is defined for functions net necessarily 

polynomials and depends only on the errors at the individual points of 

Eo We state our results for an extremal polynomial;, but we shall prove 



elsewhere that the  set  of extremal polynomials x    +   »u•  for deviatior 

(1)  coincides with  the  set  of all polynomials x    +  °°°  having no 

underpclynomials, 

THEOREM ?o     Let E be a real point,  set x,„   x2>   •••   ,,  with 

x, <   x,    ,a  and suppose m s n + 2„     Let 6[S-,S 5 p..   '•*   ., o   J  be a 

positive function of the non-negative variables g,   when Z-.&,   >  0., 

which decreases whenever all the S.   not  zero decrease and the 6 

which are.  z«ro remain unchanged„     Let T _,(x) be  the   (or a) 

T-polynomial of degree  n - 1 for E with the deviation 

8[lTn+l
(xl^   IWV*   °°°   •   IWVl]'     If S iS a Zer° °f 

T    -, (x)    then at least  one point x,   at which T    ,(x)/(x - £) n+lv   ' —   £——    k n+lv   " v        r>/ 

does not vanish  lies  in each of  the  intervals  -co < x - <* and 

E, * x  < oo„     If 4 anc* •?("§) no+-' necessarily distinct are  two zeros 

of  T    , (x)s  then at.  least   one point x,   at which  T    ,(x)/(x - <?)(x - 7) 

does not vanish  satisfies the   inequalities    Zy~ x,   -0, 

We  do  not   assume  all  the  zeros  of T    ,(x)  real,  but   the 

reasoning  of Fejer is  valid,  and hence  all zeros  lie  in the 

convex hull of E,   so these  zeros  are all  real, 
l 

! We  set first   T    , (x) =   (x - £>)<f(x),  and introduce  the  auxiliary 

polynomial of degree n  - 1;    F(x)  s [ (x - £)  - 6]<P(x)„     If only points 
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x. at which <p(x) vanishes lie in the interval E, = x < co, we choose 

e negative but so small that no point of E lies in the interval 

£, + € < x < L  o There exist points of E at which <p(x) fails to 

vanish for we have in B n+2; all such points lie in the interval 

T ,(x.) - 00 < x < Ej + £ 3 at such a point x. we have F(x.) 

unless the latter number is zero; at each point x.in the interval 

tj< x < co we have F(x,) E T -(x.) « 0„ so the deviation of F(x) 

is less than that of T ,(x) and the latter polynomial is not extremal 

If only points x, at which <p(x)  vanishes lie in the interval 

- co< x *£s a similar discussion with suitable choice of positive 

6 leads to a sijmilar contradiction,. The first part of Theorem 2 is 

established. 

The second part of Theorem 2 is established similarly,, We 

set T ,(x) s (x-<5)(r->j>)<p(x)„ and introduce the auxilary polynomial 

of degree n+ls F(x) a [ (x-§)(x->?) - e]'p(x)s  where €(>0) is chosen 

so small that the zeros £ and » (>£ )of the square bracket are real, 

with no point of E in the open interval between E,  and E    or in the 

open interval between 0 and w .  There exist points of E at which 

cp(x) is different from zero, for we have m = n+2; if all such points 

x. lie exterior to the interval d i x i vi. we have F(x.) < T , (x 

unless the latter number is zero, so T ,(x) is not an extremal *    n* 1v ' 

polynomialo This completes the proof. It is also true, and may be 

proved by choosing £ negative, that at least one point x, at which 
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f(x) does not vanish lies in the pair of intervals -co < x. » £,, 

•n = x. < 00„ but a stronger result has already been established„ 

Theorem 2 shows the impossibility of various orderings of the points 

x, and the zeros of T -,(x)„ We mention, as a consequence of Theorem 

20  some explicit situations which cannot occur 3 ^  o not formulate 

explicitly the situations obtained therefrom by    _-sal of order, 

which are of course likewise impossible„ That Cases I and II are 

impossible follows from the first part of Theroem 2S and the re- 

mainder from the second part,. 

Case I.. T ^-.(c) * 03 £, ;^ x,„ all x^(if any) with £, < x^ are 

zeros of T ,(x)o The impossibility here follows also from Fejer's 

results if x < £. u m  - 

Case_II„    T    • (xj has a multiple zero at c, - x.„  all x, (if any) 

with E. < x   are zeros  of T    - (x)„ 

Case III0    T ^(x) has a zero of multiplicity greater than one at 

Case IV\    T
n^.-|(x) nas a zero of multiplicity greater than two at 

Case V.     T +-.(x) has  zeros  at ^ and   r) (> §) not in E;  all points 

of E(if any) between £ and >} are  zeros of  T    -.(x)o 

Case VIo    T    - (x) has a multiple zero at£(in E) and a zero at 

r}(not in E);  all points  of E(if any) between E> and r> are zeros of 
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Case VII o T ,-,(x) has multiple zeros at x. and x. „ j < kj all 
 •—   n-»± j    K 

points of E(if any) between x4 and x,. are zeros of T , (x)„ 

Every multiple zero of T ,(x) is of order two and lies on E„ 

It is a consequence of Case II that x, cannot be a double zero of 

T , (x)s and a consequence of Case I that T -.(x) can have no zero in 

the interval x. < x < x„ if T -, (x, ) = 0» l      d n+l x 

With the measure of approximation (l)s further results are avail- 

able,, as we proceed to show„ 

THEOREM 3o With the measure of approximation (1)9 whenever the 

extremal polynomial T , (x) has a zero (* in the interval x, < E, <  x, , 

that zero can be chosen arbitrarily in the corresponding closed 

interval without modifying the extremal character of T -> (x)„ 

As before, we set T xl(x) s (x~E,)(f(x)s whence 

JPJJWV '^«i-'jW 

I'IVW 

L 3 ScW^'A^ ?(x.) 

jS^M'V * jSVi^j) 
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The square bracket must be zeroy otherwxse the last member could 

be made smaller by suitable choice of <J, in the given open interval,, 

contrary to the definition of T ,(x)„ Since the square bracket is 

zero,, the last member is independent of the value of £, in the closed 

interval x.   * ^ * )L r 

COROLLARY 1»  l£ an extjremal polynomial T , (x) with (1) 

as deviation has two coincident zeros_ at a point x, of Es then one 

of these zeros can be displaced arbitrarily in the interval 

x, n < x < x. - without altering the deviation of T n(x)0 "Tc-i      K*-1   •— -2. — . n+lv ' 

The proof follows precisely that of Theorem 3° 

It is a consequence of this Corollary that with (1) as a measure 

of deviation there exists some T -,(x) whose zeros lie on E and are 

simplej for one component of any multiple zero may be shifted con- 

tinuously to a point of E not originally a zero of T -.(x)^, without 

altering the extremal property of the polynomial T -.(x)j we use 

the impossibility of Case VII„ Thi3 fact is of significance for 

Theorem ly  the zeros of T 1(x)> namely the points of interpolation 

of p (x) to f(x)„ may be chosen all distinct. 

COROLLARY 2.  In the case m » n+2 = 3 and with (1) as deviation, 

u. • 1„ there exists a T ,(x) with zeros in both x. and x „ Indeed, rj   a   . n+lv ' T.   m  — ' 

every T ,(x) whose zeros lie on E and are simple vanishes in both 

x-   and x m 

By the consequence of Corollary 1 at least one of the polynomials 



P (x) s     IT   (*      ^) 

is extremal,,     The deviations of F, (x)  and F?(x) are respectively 

|(xL - x2)(x1 - x^)   ...   (x,   - xm)|     , 

|(Xg -  xi)(x2 - x3)  •••   (Xg ~ xm)|     , 

and it is clear that the latter is less than the former» a corre- 

sponding comparison applies to F  ,(x) and F (x)„ Then F,(x) and r - rsr m»l       m 1 

F (x) are not extremal, so every extremal T ->(x) whose zeros lie 

on E and are simple vanishes in both x. and x „  This conclusion is 
^ 1     m 

generalised below (§5)» 

Corollary 2 does not extend to arbitrary m and ns as we show by 

the example m -  6 X-.   ~  -2„ Xp « -1 •• £„ x • -1„ x, -  lp x^ * l+8p 

x, = 2r where 8 i_s infinitesimal„ For the polynomials x - U, 

2 
(x+2)(x*l)_„ (x+2)(x--l)s x »1, the deviations are respectively (except 

for possible added infinitesimals) 12 „ 2US 8f 6„ so for 5 sufficiently 

small no extremal polynomial vanishes in x, or x^-o 

Even in the case m • n+2s the deviation of F^.(x) is not neces- 

sarily convex, considered as a function of x, „ We show this by the 

example m « <>, x, " =1 ~SS x^ ""  "i» X3 " °» \  = 1t x* * 1+^» ^V * lo 

The corresponding deviations for F,(x)5 F?(x)p F-.(x) are respectively 

S(l+6)(2+£)(2+2&) - US + 1062 + ••• , 2£(2+S) - US + 2S2S 

2 2 
(1+S) ** 1 + 26 + & s and the non-convexity for S sufficiently small 
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fellows,, This same example shows that T ..(x) may have a double zero 

on E„  for the two polynomials Fp(x) • (x + 1 + S)x(x - l)(x - 1 - S) 

and F. (x) * (x + 1 + 5)(x + l)x(x •- 1 - £)  are both extremal^ hence 
2 

half their sum (x + i + S )x (x ~ 1 - 8 ) is also extremals, Here with 
i 

the special choice S * 22  »• 19 all three polynomials F?(x)s Fo(
x)» 

F. (x) have all their zeros on E and are all extremal, 

flu Approximation by arbitrary families of functions„ We 

investigate nows following suggestions made to the writers by Professor 

Ostrowski,. best approximation to an arbitrary function F(x) on E; 

(x, t  Xp0 °°° 9  x ) by linear combinations of the given functions 

'•/>-. (x)„  <A,(x), •>»<• j, ^U+T(
X
) defined on Es  n £  m~l„  The measure of 

approximation 

m 
(U) 

n+1 

k-=l  i   ' V*l 

is to be minimized„  It will be useful to have the functions Vy(x) 

satisfy Condition Ar namelyt   that if any n points of E are given, 

there exists some linear combination of the fyix)  which vanishes in 

those points but is different from zero in at least one of the re- 

maining points of E0 We prove 

THEOREM !u Suppose m = n+1;, and the set V^/(x) satisfies Con- 

dition A0  Then there exists at least one extremal function P(x) 

defined by (U) which coincides with F(x) in at least n+1 points of E0 
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Let P(x) be the (or an) extremal function of the prescribed 

form which coincides with F(x) in the maximum number 0  of points of 

E„ If f  »• n+ly the conclusion is satisfied., Otherwise let 

cp(x) £ £n+'" pv%(x)  vanish in this set E' of y(Zn)  points of E but 

be different from zero in at least one other point of E„ For 8  numer- 

ically small we consider 

m 
V   uKJF(xk) - P(xk) - Scpix^)] 

k-1  ! ; 

k^i 'k k F(x^) -  P(xk) - ^f(xk) i 

J 

I 

It    Pk|F(\) " ?(Xk) 
k~l  K'    K        K 

m 

k^i 

here C. is defined as plus or minus unity, according as its original 

factor is positive or negative„ We choose 8 so small that on E~E' the 

functions F(x, ) - PC^v) an<* ^v^O " ^""v^ " &f(x.)  have the same 

algebraic sign0  If the last coefficient of 8  does not vanish, a suitable 

choice of positive or negative £ yields a smaller deviation for the 

function P(x) - 8f(x)  of the linear family than for P(x)0 On the other 

hand,, if the last coefficient of &  vanishes., we can increase |g| 

monotonically so that the deviation remains constant until 

F(x) - P(x) - S<p(x) first vanishes in a point of E-E j then an extremal 

function coincides vith F(x) in 0+1 points of E„ contrary to hypoth- 

esis,,  This contradiction completes the proof0 
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Of course for approximation by polynomials we have ^'(x) » x  s 

~U • 1„ 2„   °°°   „ n+1, and we need merely set <p(x) a (x~x! )(x-x' ) ° <> „ (x-x') 

to show that Condition A is satisfied,, where the xJ are the given n 

points of E0 

Condition A need not be satisfied for an arbitrary set of func- 

tions ^(x); indeed we might have each ^./(x) constant on E or on a 

subset of Eo  But if there always exists some linear combination of 

the )^/(x) which assumes n+1 arbitrarily prescribed values respectively 

in n+1 arbitrary points of E (for which various sufficient conditions 

are well known).- Condition A is satisfied,, Adding to this "solvence" 

condition a similar one for "unisolvence',1 properties of approximating 

functions of a general, not necessarily linear family, are studied in [8]„ 

Likewise,, suppose whenever n columns are chosen from the matrix 

MV 

^(x.) 

Wl) 

^S(x2) 

iMV- 

>WX2> 

>w 
• • ^Xm> 

there exists some column not linearly dependent on themj then the 

functions ^(x)  satisfy Condition A„ 

5o Totality of extremal polynomials as a convex set0  It is 

clear from the triangle inequality that with (1) as deviation the 

totality of polynomials p (x) of given degree of best approximation 
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to an arbitrary f(x) on an arbitrary set E form a convex sets in the 

(] ) (2) 
sense that if p  (x) and pv  (x) are two such polynomials, so also is 

Ap     '(x) + (l-4)pv  (x)„ 0 < A  < 1„ We proceed to investigate further 

the totality of such polynomials in the case that E is realp more 

n+1 
especially when E consists of m ~  n+2 points, with f(x) a x  5 thu3 

we are studying the totality of the functions T -, (x) of Iheorem 1 

in this case,, 

The points y, y?, 
u"° „ y _,_-, are said to separate the points 

x,, x0„   °"° „ x A? (we suppose x < x. ,) if and only if we have 

(5)      ^ c jL  fi X2 < y2 * ... i y n+1 - Xn+2  s 

and the separations is said to be strong if and only if this relation 

holds without the equality signs. 

THEOREM 5  I£ we_ set Vx) * jPk(x""Xj)fl k = lc 2» **° • n+2' 
then the polynomials P(x) "  x   + bx • -•« whose zeros separate 

the points x, are precisely the polynomials 

(6) P(x) 5 £ Vk(z)» *k J °' £Ak " X ' 
k^»l 

Every polynomial P(x) of form  (6) with every X   >  0 has  zeros 

strongly separating the x^  for we have Pn+2(xn+2^ * °»   Pn+l^xn+l^   <0« 

Pn(xn) > 0f   °°°   » whence p(xn+2>  > °»    P(xn+1) < °>    P(xn} > °>   °°°   ' 
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Consequently every polynomial which is a limit of polynomials P(x) 

with A, > 0 also has zeros separating the x, , so the sufficiency of 

(6) is established, 

Conversely^ let the zeros of P(x) s x   + bx + •°° separate 

strongly the points x, „ Each zero of P(x) is simple, so we have 

P(x „) > 0„ P(x , ) < CL P(x ) > 0„ •"   o    The linear independence 
n+d    •   n+l    '   n    * r 

of the polynomials Pk(x) implies that we can write P(x) = Z^, Pk(x)„ 

whence A.   = P(x. )/P,(x, ) > 0„ Moreover we have 2Ak = !• Every 

polynomial P(x) a x   + °<> ° whose zeros separate the points x, is 

the limit of a variable polynomial of the same form whose zeros sepa- 

rate strongly the x  so Theorem!? is established,, 

In every case under Theorem ls the totality of extremal poly- 

nomials T ,(x) forms a convex seto By a basic extremal polynomial 

we understand an extremal polynomial which cannot be expressed as a 

linear combination (with positive coefficients) of two distinct 

extremal polynomials»  Since the set of all extremal polynomials is 

convexs closed„ and bounded, each extremal polynomial can be expressed 

as a linear combination of basic extremal polynomials.  It follows 

from Theorem 3 and its Corollary lthat if E is reals every basic 

extremal polynomial has its zeros simple and lying in points of Ej 

every extremal polynomial can be expressed as a linear combination 

with positive coefficients of these, and these are finite in number,, 
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We choose now m * n+2$ let r«(x) denote a smallest basic set of 

ext,remal polynomials; the totality of extremal polynomials are then 

precisely the set 

r-) r  (x)      )  - * 0  ^1 • 1 

Let the points x be the common zeros of all the rc(x), and the 

remaining points of £ be the point-? x.j„    We set £(x) - JT (z-x )s 

rjp(x) a £(x)q„(x)e     Then the totality of extremal polynomials is 

precisely the set 

5 (x)TUfqp(x),    M o,   £ap- i   . 

Except In the case (m * n+k)  that but one extremal polynomial exists 

there are at least two oasic extremal polynomials,, the totality of zeros 

of those polynomials consists of E, and each polynomial qo(x) vanishes 

in all the points %. but one0 Each x ,is a non-zero of some qe,(x)0 

Thus the set qo(x) is precisely a set of the Kind considered in 

Theorem 5. with a slight change of notation,.  The zeros of a poly- 

nomial r0(:x) consist (by Theorem 5) of the x and a set of points 

which separate the x^/j the x need not be distinct from the latter 

set.  Conversely,, any polynomial T , (x) a xn+1 + »•• which vanishes 

in the x^ ana whose other zeros separate the x /i3 an extremal poly- 

nomial, Ksre we have a complete geometric characterization of the 

extremal polynomials,  The zero? of every extremal polynomial separate 
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the points of E, by Theorem 5° 

It is a consequence of Corollary 2 to Theorem 3 that if u, - lp 

n = ls  m = n+2s every basic extremal polynomial vanishes in both x, 

and x „ so there are at most n such polynomials„ Every extremal 

polynomial vanishes in x. and x o 

As an illustration we choose 6 as in §3, n * $„  x,= -1 - 8, 

X, - -1, x3 - 0, xu - 1, x^ - 1+5, 6 = 2l/2~l, ^ - 1, and set 

P, (x) •  [T(x"X.)0 The three polynomials Pos P.., P, are all basic, 
k    j4c  J Z  3  U 

and an extremal polynomial with a double zero is ^[P?(x) + P.(x)]j 

here x ° 0 is both a point of E and a zero of some qo(x)0 

6o Least p-th power approximation„ The following theorem 

is based on a remark made to the writers by Dr„ A« Dvoretzky: 

THEOREM 6o Let E consist of the real pcints x, 9  x,s ° ° ° , x , 

(m ^ n+l)s let F(x) be defined on E„ let p(0<p<l) be given, and let 

the functions % (x), ^9(x), °°* , V   ., (x) satisfy Condition A (§U)» 
i        n+1  ' n+ 

Then every function P(x) S ^^i/Yi/i^)  °f best approximation measured 
1 

by the deviation 

m 
(8) 

k $r> F(xk) - PO^) 

coincides with F(x) in at least n+1 points of E» 

As in the proof of Theorem Us suppose P(x) to be an extremal 

function which coincides with F(x) in precisely P(-0) points E* of E. 

t   ' 
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We show that the assumption p = n leads to a contradiction,, Let 

<P(x) s £ B fp ,(x) vanish in E' 8 but be different from sero xn at least 

one other point of E, The function P(x) + 6<p(x) belongs tc the linear 

family under consideration,, 

For 8 numerically small we consider 

m 
f,   Pk|F(xk).p(xk)»6f(xk)|' 
k=l 

a sum of which 0 terms vanish and of which other terms may conceivably 

be constant. Each of the remaining terms (at least one of which must 

exist, by the definition of <P(x)) is of the form |A + B8|^, where A and 

B are constants with B /  0„ Unless the function |A + B8|  of 6 with 

B / 0 is zero, its graph is locally concave downward, so a sum of such 

functions plus a constant cannot have a local minimum,,  Thus (9) is not 

a local minimum for 5=0 unless at least one of the remaining terms 

vanishes for 6=0; hence P(x) coincides with F(x) in at least p + 1 

points of Es contrary to the definition of p „ 

Theorem 6 implies that every extremal polynomial P(x) is found 

by interpolation to F(x) in n+1 points of Ej there exist but a finite 

number of polynomials interpolating to F(x) in n+1 points of E„so 

every extremal polynomial can be found merely by comparing their 

measures of approximation„ 

Of course Theorem 6 implies that every T-polynomial, namely 

a polynomial T *V(x) = x   + bx + • ° • of 



m 
minimum norm    V   u 

we assume m - ns-2„ 

*£i<v „ has all its zeros onE, whether or not 

57o Zeros of T°poJynomialss continued. We return to the situation 

of §3„ to study in more detail the location of the zeros of T-polynomials, 

THEOREM 7° With the hypothesis of Theorem 2, the ordered zeros 

y., ;„ ••• sy , of every T , (x) separate a suitably chosen ordered 

subset E1s xl,  x' „ ••• , x' + of E, in the sense of (!>)« 

We establish this result by the use of the cases of impossibility 

enumerated in §3 as a consequence of Theorem 2, by examining the number 

N_(x) of zeros of T ,(x) not greater than x and the number N_,(x) of 

points of E* not greater than xs as x increases monotcnically<, We 

show that for every x in the interval x, £ x - x we have 

(10) NT(x) - NE,(x) * NT(x) + 1  . 

Always as x increases monotonically we adjoin each new x, to E' if and 

only if after adjunction the relation (10) holds for x = x, „ In the 

proof the word zero refers to a zero of T -,(x)0 

Each simple zero at a point of E shall be called a zero of the 

first kind; as x moves across such a zero y each of the numbers N„.(x) 

and N_,(x) is increased by one unit, so that the difference is un- 

changed and (10) if originally valid persists with the same equality 

and the same inequality signs as before„ Each other zero is called 
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a zero of the second kind; in such a point y, there is one more zero 

than points of E, so as x increases through y, the difference 

N„,(x) - N_,(x) is decreased by one unit, and if (10) holds for x < y, 

with the respective signs < and = it becomes valid with the signs * and 

< for x > y, „  The precise content of the impossibility of Cases V5 

VI, and VII can be expressedj  between two successive zeros of the 

second kind must lie at least one pcint of E not a zero,, 

The relation (10) holds for X * X,j in every case we choose 

x, • x,9 a point which cannot (Casell) be a double zero.  The relation 

(10) then holds for x = y, if y, is a zero of the first kind and also 

holds (Cases I and II) if y, is a zero of the second kind. 

If T ,(x) possesses only zeros of the first kind, the conclusion 

is immediate; the relation (10) holds in each x, , and some x is 

(m > n+1) not a zerov whence N_(x ) • n+1 < N„,(x )„ \      / „        T m E'  m' 

If T ,(x) possesses zeros of the second kind, let y, be the first 

(i.e., smallest) of them. By Cases I and II relation (10) hclds for 

x = yv„ The next succeeding zero yp of the second kind must be sepa- 

rated from y. by at least one point of E not a zero, so (10) holds 

also for x = yp„ When we arrive at the last zero y. of the second 

kind we have N_(y.) = N_, (y.)=  Cases I and II show that some x, > y . 

is not a zero, so we have N_(x ) = h+1 < N^,(x ). which completes the * T m E' m"        * 

proof o 

Of course it is a consequence of (6) that the points y, are the 

respective limits of points that strongly separate the points x£ of E. 
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It is to be noticed that Theorem 7 applies in particular to the 

deviation (3), for all p > 0„ 

§8, Determination of the polynomials T -,(-)° We have studied 

(Theorems 2 and 7) the separation of the points of E by the zeros of 

T ,(x) especially by the method of adding positive or negative con= 

stants to various linear and quadratic factors of T ,(x)„  It is 

conceivable that further information could be obtained by similar 

consideration of factors of T , (x) of degree higher than two. How•-- 
m-1 

ever, it turns out that the description of separation indicated in 

Theorem 7 is completely characteristic of the extremal polynomials,, 

at least those of degree m-1 and deviation (1), as we proceed to 

indicate„ In Theorem 8 the set E need not be realc 

THEOREM 8„ The totality of T~polynomials T _-,(z) of degree 

m - 1 for Es  (z,„ z? „ "°° s  z ) with measure of approximation 

• H<Vi>-pPi|W«i>|   •  H > o 

is found as follows„ With the notation <^{z)  a ~ff (z - z. )s arrange 
1 i __ 

the numbers u. |o)' (z. ) |   in order of magnitude,  and choose T    , (z. ) = 0 

except in the subset E' s     (z'     zl,   •••   t  Zp) of E on which u. |to' (z. )| 

takes its smallest value;  on E'   choose  T    -,(z.)  arbitrarily but so 

that T    , (z!) - ?l. a)1 (z')c  X   * 0, Y? A,   • 1;   then we have 
•-    m—l    l l li **     i —— —   
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Vid) Sco(.)|) ^ . 

where we set X. • 0 in the points of E not in E'. 

Any polynomial P(z) of degree m-1 is expressed by Lagrange's 

interpolation formula; 

(12) 
P(0 m r\s. ;   , » 

P(«) S T-rri-s ^2 7  O CO1 (z±)  z-z± 

and for P(z) « z   + ••• we have consequently 

(13) 
m P(zi) 

1 - po)'(z.') 

Thus T _-,(z) is the (or a) polynomial P(z) defined by (12) where the 

arbitrary numbers P(z.) are chosen to satisfy (13) and to minimize 

U(P) -£>i P(*i) - £p 
m 

»'(z. ) 
I 

P(z±) 
U)' (z.) 

It is now clear that the minimum of u(p) is found by choosing 

m 

^5 
P(2±) 

iO' (Z. ) 

and further by choosing P(z. ) K A.t^c (z. ) in the manner described in the 

statement of Theorem 8»  The polynomial T _-.(z) is unique when and only 

when E' consist?, of but one points 
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In any case, it follows from Theorem 5 that the zeros of T ->(x) 

separate the points of E„ provided E is real. 

Theorem 8 is somewhat similar to the determination of the 

T-polynomials using (2) as deviation, by Fekete and von Neumann [5]s 

later studied more deeply by Fekete [U]0 

COROLLAKI„ Under the conditions of Theorem 8 and with the choice 

ji.   » u /!<*>' (z. )| „ u > 0, for every is the set of T-polyncmials 

T ,(z) is precisely the set 

m ^ GO(Z) m 

V  z~zi '     *      '   Y i = 1 

In other words the totality of ^polynomials is the convex set depend- 

ing on the polynomials P. (z) a o>(z)/ (z-z, ), and if E is real is 

precisely the set of polyncmials whose zeros separate the points of E„ 

The last statement follows from Theorem 5° 

On another occasion the present writers expect to determine and 

characterize the T-polynomials defined by deviation (3), with especial 

reference to separation of points of E by zeros„ 

§9. Mutual separation of zeros of the T (x). Atkinson [2] has 

indicated that the classical properties [e.g.,, Szegft, 9, §3°3] °f 

separation of zeros of polynomials orthogonal on a finite real in- 

terval are exhibited also by the zeros of the T=polynomials for that 

interval with deviation measured by the integral of the weighted 

p-th power, p >  lj the classical case is precisely that of the 
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T-polynomials for p • 20 The methods of Atkinson apply without 

essential change in our present case of deviation (3), p > 1, where 

E is real, as we now indicate., 

If T (x) is the necessarily unique polynomial T (x) * x + bx ~ + oo» 

which minimizes 

m 

(1U) k*< w p >1 

and if t(x) is an arbitrary pclynomial of degree n-ls it ir readily 

proved by variational methods that we have 

m . 

which represents a kind of orthogonality„ 

We omit the elementary proof of the 

LEMMA o If <x and s are real, we have 

sc ex HP~2  * /3|/9|P"2] - ag[oc  • /s]     ; 

if either of the numbers in square brackets vanishes, so does the other. 

We suppose the points x, of E so arranged that x. < x„ < °°° < x 

and of course m = n+i„ 

THEOREM 9=  If c is real and 0 < V * ny the polynomial 

F(x) s T (x) + cT,/(x)(40) has at least V sign-changes in I:  x^ = x « x 
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The function F(x) cannot vanish at all points of E„ If the 

theorem is false, there exists a polynomial G(x) of degree less than 

V which throughout I has the same sign as F(x), and which by the Lemma 

then has the same sign throughout I as 

T (x) 
nv ' 

Tn(x) P_2 + CT,(X) Mx)| p-2 

Thus we have 

m 
(16) 

k-l K 
W P-1 sg W r„<V p-i sg M^) • • G (V > Oo 

But (16) contradicts the relation (15) for orthogonality of G(x) to 

T (x) and T^(x)„ which completes the proof„ We emphasize the fact, that 

the polynomial G(x) is subject to no condition at a point of I at 

which F(x) vanishes but dees not change signs and is subject to no 

condition at either of the points xn or x if F(x) vanishes there. In 1    m 

particular the choice c • 0 shows that T (x) itself has at least n 

sign changes interior to I, so all the zeros of T (x) are simple and 

lie in the open interval x, < x < x „ 

It follows from Theorem 9 that the polynomial H(x) s T (x)+cT _-,(x) 

has at least n-1 sign-changes in Is thus has at least n-1 zeros of odd 

order, so has its n zeros all real and distinct.  Then the polynomials 

T (x) + cT ,(x). T'00 + cT* T(X) have no common zero, whence the n      n-1  * n      n-lv * 

polynomial 
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(17) T (x) T' , (X) - T' (X) T ,(x) v ' TV   '    n-lv '   TV   '    n-lv ' 

has no real zeros, From the coefficients of x and x   in T (x) and 
TV    ' 

T _,(x) respectively it follows that the coefficient of x n~ in (17) 

is negative,, so we have proved 

THEOREM 10„ For all real x the polynomial (17) is negativea 

From Theorem 10 it follows that the polynomials T (x) and T _, (x) 

have no common zero,, and also, by differentiation of the function 

T (x)/T T(X)„ that the latter increases monotonically wherever it is nv "   n-lv '• * 

defined,, If £,  and rj are two successive zeros of T (x)„ the function 

T (x)/T _, (x) vanishes for x * £,  and x = ??, hence must have a dis- 

continuity in that interval: 

THEOREM Ho  The zeros of T (x) aie strongly separated by those 

of Tn^(x)s n = 2, 

Theorem 11 is the main result of §9° 

We have already pointed out that every T (x) has all its zeros 

interior to I„ The monotonic character of T (x)/T ,(x) can be   nv "   n-lv ' 

written for x > x in the form 
m 

T (x)    T (x ) 
TV   ' TV  nr 

T ,(x) > T Ax )     » n=lv ' n-1 nr 

so (as is likewise pointed out by Atkinson for the polynomials that he 

considers) the sequence 

T (x) n 
_, .  ,   n • 0  i  2  • •a 

nv m' 

increases monotonically with n„ 

July 7S 1953 
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